MULTIROTOR
This finite element software is devoted to the prediction of the dynamic behavior of parallel multirotors in bending.
Modeling
Node: 4 degrees of freedom.
Shaft: two-node beam element, classical stiffness and mass matrices, axial forces, shear, rotatory inertia and gyroscopic effect are taken into account.
Disk: one-node disk element, rigid, defined by mass and gyroscopic matrices effects.
Bearings: stiffness and damping matrices which can be non-symmetric and can vary as a function of the speed of rotation.
Specific elements: modeling of particular effects such as couplings, magnetic attraction, stator …
MULTIROTOR predicts:
In Statics:
- The deflection of the shafts subjected to gravity and/or forces which can be concentrated.
In Dynamics:
- Natural frequencies and modes in rotation, Campbell diagram, instabilities and damping factors.
- Mass unbalance response, asynchronous force response, response to a harmonic force fixed in space.
- Maximum stresses in the shafts, loads on bearings.
- Elementary energies, kinetic and strain energies in elements.