Qualips:.:

Quality Platform for Open Sou

Quality Platform for Open Source Software

Qlualips:

Quality Platform for Open Source Software Il

Deliverable A1.D2.1.4
Report on the proposed IPR tracking methodology

M-

Due date of deliverable: 30/10/2009

Actual submission date: 16/12/2009

This work is licensed under the Creative CommortalAttion-Share Alike 3.0 License.

To view a copy of this license, visit http://creatommons.org/licenses/by-sa/3.0/ or send a letter
Creative Commons, 171 Second Street, Suite 300F&antisco, California, 94105, USA.

This work is partially funded by EU under the grahtST-FP6-034763.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 1 of 64

SEHNNE)

Change History

Author (Partnen)

][] =]

d

en
al

)

0.1 01/10/2008 | Guillaume Rousseau (INRIA) Initiaérsion, first version of th
Palette annex 2 questionnaire
0.2 01/11/2008 | Stéphane Dalmas (INRIA) Palette m2n@uestionnaire update
0.3 02/03/08 Guillaume Rousseau (INRIA) Palette €finanaire feed back ar
analysis. Contribution to Palette Op
Source Strategy (including propo
for IPR Tracking set up)
0.4 24/06/2008 | Magali Fitzgibbon (INRIA), Definition and integration of th
Luc Grateau (INRIA), Legal Situation
Guillaume Rousseau (INRIA
0.5 19/12/2008 'Magali Fitzgibbon (INRIA), | 1™ Full Draft
Luc Grateau (INRIA),
Guillaume Rousseau (INRIA
1 26/01/2009 = Magali Fitzgibbon (INRIA), | 1rst version of the deliverable
Luc Grateau (INRIA),
Guillaume Rousseau (INRIA
2 16/12/2009 | Magali Fitzgibbon (INRIA), | Final version of the deliverable
Luc Grateau (INRIA),
Guillaume Rousseau (INRIA

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 2 of 64

creative
commons @

BUE

EXECUTIVE SUMMARY

Improving the legal quality and legal safety of gmments or component-based software released under
open source licenses, is globally considered asyaidsue for the software industry as well as foero
source software communities, editors or/and users.

The QualiPSo project is addressing these quesiiorihe “Legal Issues” Activity, contributing to
enhance the awareness of the open source ecodygsthase issues. The present deliverable is aiating
providing a general, conceptual framework for legtual Property Rights Tracking (IPRT)
management of Component-Based and Collaborativelyeldped software (CBCDS). However, the
methodology proposed in this document is as gers=mipossible and should apply not only to open
source Software or components, but also to hylmftivare (proprietary software containing components
under permissive licenses) or even to fully prdprie software (with no non-permissive components
such as “Copyleft” components) or to software etptbin a Software as a Service —SaaS model.

The underlying model in which the IPRT methodolagyproposed consists in considering the coupling
between a “licensing in” process — reuse of preéexjscomponents - and an exploitation scheme of the
CBCDS that is most often a “licensing out” — distriion - process.

The “legal roadmap” is the name given to this ‘tiseg out” / “licensing in” coupling formalization.

The goal and objective of an IPRT methodology amfework are presented is this report as well as the
main concept for IPRT, the Legal Status of Softwdiee report proposes an IPRT methodology and
describes the key elements that have an impadielegal status of the software. The developers laav
key role to reach a Legal Status that is comphgitit exploitation intentions or model of the edjtas

the Legal Status is formed through their actiond &ith this respect, so called “good IPR developimen
practices” are of tremendous importance.

IPRT is a tool to make sure this “legal roadmapfoldowed during the development process and more
generally to make sure that the Software’s legalistis compatible with the exploitation scheme.

A dedicated audit team is set up to plan and implanthe six steps IPRT framework to a given
development situation. Development team providdstailed description of the software (1.) Goals and
objectives of the audit are defined, as well acafising in” and “licensing out policies” (2.) Lalgstatus

is determined by comparing “perceived” legal statudased on a questionnaire (Annex 1) — and
“determined” legal status — based on a code mittobsuch as FOSSology™ (3.) Problem Identification
and Risk Evaluation is operated (4.) Critical pesblsolving is performed (5.) Residual Risk (if arsy)
covered by insurance before dissemination/distobui6.)

A use case is given to illustrate the implementatibthe methodology done at INRIA.
The associated tool box to establish the Legalistatt CBCDS is provided.

Already existing tools are helping to gain produityi such as the FOSSology open source license
checker. However, strong standardisation needs emceuntered (name of the licenses, structure and
content of the headers, etc...) to reduce the tineatspn and costs of CBS’s analysis of tools results
New tools are to be developed, to avoid bottlen@wses of the audit process (mapping license cHecke
results to functional zones for example.)

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 3 of 64

creative
commons @

Qualips:: Sz

'RFXPHQW ,QIRUPDWLRQ

IST Project FP6 — 034763 Acronym QualiPSo

Number

Full title Quality Platform for Open Source Software

Project URL http://www.qualipso.org

Document URL

EU Project officer |Michel Lacroix

Deliverable Number |1 Title |Report on the proposed IPR tracking
methodology

Work package Number (1.4 Title |IPR Tracking

Activity Number |1 Title |Legal Issues

Date of delivery Contractual 30/10/2009 Actual 16/12/2009

Status Version 2.0, dated 16/12/2009 final

Nature Report Demonstrator Other

Dissemination Public Consortium

Level

Abstract Methodology to track rights and obligations during the whole development

(for cycle, basic issues of trust in contributors and contributions, integration in

dissemination) development environments, prototype software

Keywords IPR Tracking

Authors (Partner) |Luc Grateau (INRIA)

Magali Fitzgibbon (INRIA)
Guillaume Rousseau (INRIA)
Stéphane Dalmas (INRIA)

Responsible Luc Grateau Email [luc.grateau@inria.fr
Author

Partner |INRIA Phone |+33 1 39 63 54 59

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 4 of 64

SEHNNE)

EXECUTIVE SUMMARY

$ %&" (
)*+ %& " (
L% (%
% . -
" %&'0 " 1
!
#
% &
% & "' (
(
&) +
2 %& "
* +
4 5 (
$% n
$#6
$ - 17 8 -
$''(*
$ " + *
$ " + ¥
$ - 18
$ - 18 -
$ / & O# /1
$ "1 &
$$- $1% & (*
$)-)1- 9 (4 %
#1 | # |
#1 /
$,- .1 8 %&
)4
+ 1" +
6,47 &
< = -
] *
1 4>

QualiPSo » 034763

BUE

" %&' 0 "

¢ Al1.D2.1.4 « version 2, dated 16/12/2009 « Page 5 of 64

BUE

>>*? 1*@ % *"* 4 -* -'@8A H
1 M
%&' *@ % *% . 1 H
& '*5 | %)% [/ #6 | 73
& * 8 . 1 0 73
& " 1 . & 0 %))%
9&& & O & 9 & 7
& $* #1 / 7
& -*& [# 1 7
!l 6 * 7
* 7
1
Figure 1: Free SOftware lifE@CYCIEcccco oo erreee e e e e e e e e e eeaanannes 9
Figure 2 : The CBCDS model from the legal iSSUESIELLIVE.........ccooiiiiiiiiiiiiii e 11
Figure 3: The fre@dOm MaLriXcooiiiiiiieici e e e e e e eree e e e s e e e e e e e e e e eeeeneannne 12
Figure 4: The technical vs legal maturity diagramlcoooiiiiiiiiiiiiiiiii e 14
Figure 5: IPR Tracking MOEIS.........coooiiiiiiieiee e e e e 15
Figure 6: The exploitation SChEMES MALIX...ccroiiiiiiiiiiiieee e 17
Figure 7: MethodoIOQY OVEIVIEW..........oie e et e e e e ee ettt s s s e e e e e e e e e aaaaeeeeeaeeaaeeeenennnnnes 30
Figure 8: XtreemOS overall architeCture oo 32
Figure 9: XtreemOS layer deSCIPLIONcccomemeeiiiiiiiiiiee e e e e e e e e e e 32
Figure 10: High level Description of DIET'’s functial ZONes.............cooovviiiiiiiiiiiiiiiiens 33
Figure 11 DIET Detailed High Level Description Ftinnal zones..............ccccceeevivvviiiiivenes 34

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

Step 3. Legal Status determiNationN. . oooeeeeeeeiiieeiiiiiiiiee e 35
DIET perceived legal Status......coeeeeereeiiiiiiiiiieee e eeeeeeeeeeeeveseeemeeeeaeee s 37
Step 4. Problem identification and Bsluation..................ueiiiiinneeee e 38
Blocking problems identification for DIIE..................uuviiiiiiieieee e 39
Step 5. Solve Blocking/Critical Problem..............oooiiiiiii e 40
Final legal situation of DIET after pleim solving.ooovvvviiiiiiiii e, 42
Template used to determine perceive@LBALUScceevviieiiiiiiiiiiiiiiiie. 45

Flowchart used to complete the LegaiuStaf DIET (Part 1)cccovvvvvvvvvvnnnnee 46

Flowchart used to complete the LegaiuStaf DIET (Part 2)ccoevvvvvvvvnnnneee a7

PALETTE IPRT PrOCESS......ccceettmmmme ettt emmn e e e 64

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 6 of 64

creative
commons @

BUE

1 Introduction

1.1 A need to improve software legal Quality

Component-based software (CBS) is somehow a pleaniaslieed, most software is nowadays
component-based software, and the proportion ofpoorants released under an open source
license to be used in CBS is expected to graespite the increasing complexity of CBS, it is
commonly expected and understood today that tHenteal maturity of open source based CBS
could reach excellence and confidence (as alreadyer exemplified by the use of open source
components in proprietary software). However, 8tae of fact is paradoxically related with a
growing uncertainty regarding the use of open sourontaining CBS. The collaborative
development of software and the reuse of pre-exjstiomponents have legal consequences
developers should be aware of and that open s@oroenunities or editors should master. Legal
status of CBS, and especially CBS containing opaurce license based components is a
concern for most software editors.

This lack of trust and confidence is partly duethie extreme diversity of licenses and other
Intellectual property rights (IPR) attached to theailable components together with the
difficulty to identify these components in a largeoject. A case of concern for proprietary
software editors or for hybrid software editorsi{@® having proprietary licensing of software
incorporating open source components under peneisisiense such as GNU LGPL) is the fact
that they must avoid to use open source compotieatssed under non-permissive licenses that
are not compatible with their exploitation or biese model. Another case of concern for open
source communities is the fact that they couldgrate available open code components that are
not licensed under open source license criterialédised by the Free Software Foundatfon

by the Open Source Initiatiebut under licenses that turns out not to be cdileawith a
distribution under open source license (for examptene licenses give free access to source
code for research use only, which does not fit with open source license criteria). This
uncertainty is reinforced for collaboratively demeéd software (CDS), for which large numbers
of contributors, with various profiles, are jointigveloping software, sometimes from different
countries with different applicable laws.

However, improving the legal quality and legal $afef components or component -based
software released under open source license, isaljyoconsidered as a key issue for the
software industry as well as for open source soffveammunities, editors or/and users.

The QualiPSo project is addressing these questiotise “Legal Issues” Activity, contributing

to enhance the awareness of the open source emwstgsthese issues. The present deliverable is
aiming at providing a general, conceptual frameworkintellectual Property Rights Tracking
(IPRT) management of Component-Based and CollakehatDeveloped software. However,
the methodology proposed in this document is agmeas possible and should apply not only
to open source distributed Software or compondmis,also to hybrid software (proprietary
software containing permissive components) or gaemlly proprietary software (with no non-

! Ref : Economic impact of FLOSS on innovation anthpetitiveness of the EU ICT sector
Contract ENTR/04/112 Final report 2006 Lead cortnat NU-MERIT, the Netherlands

2 http://www.fsf.org/licensing/

? http://www.opensource.org/docs/osd

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 7 of 64

creative
commons @

BUE

permissive components such as "Copyleft” componemt$o software exploited in a Software
as a Service —SaaS model.

The underlying model in which the IPRT methodolagyroposed consists in considering the
coupling between a “licensing in” process — reugepreexisting components - and an
exploitation scheme of the CBCDS that is most oftélicensing out” — distribution - process.

This framework is presented as a methodology tckti®R along the software Product Life
Cycle. It is a contribution to a difficult issueathdo not pretend to be a universal solution, but a
way to address the problem that is aiming to hgittisome key dimensions of it and to show
some standardization needs (such as license deatbomy The methodology presented here has
been designed to be used in diverse organizatiaol bkaving its governance (management)
structure and using different tools and developmenvironments. An objective of the
methodology is to promote a definition of the Le@dhtus - as defined below - of software.
However, this proposal will have to be discussed amther enriched and could lead to an
interesting standardization process to be set up.

By Intellectual Property Rights Tracking (IPRT), wefer in this document to a set of process
and actions aimed at defining the legal statusodtfisre and monitoring its evolution during the
development life cycle.

The objective is to look at the software developtpencess from the legal perspective, in order
to achieve software development with a controlledal status, which is compliant with
distribution and exploitation models of the Softevaas defined by its editor(s)/owners. The
compliance is checked during audit phases. It &léovdetermine risks associated to unclear
chains of rights and obligations and to cover thosks with appropriate actions (technical,
legal, insurance).

For the purpose of this report, the term “Softwargieans “Component-based and
Collaboratively Developed software”. When “software written without a capital letter “S”,
the word has the generic meaning.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 8 of 64

creative
commons @

BUE

1.2 Free software development life cycle, legal mat urity, and industry
or business trends.

According to SENYARD and MILCHMAYR free software development process could be
modeled with a three phases lifecycle. A first hemtral” phase is characterized by closed
development performed by small group of developeigywed by a transition phase in which
the development community is emerging together watlappropriate re-engineering of the code
architecture, to facilitate collaborative develomierhis phase is leading to so called “bazaar
phase”.

Cyriginal "idea" Peer reviews

Parallel perfective and

Project Author . -
- corrective maintenance

Core developers

Modular design Community
Unix philosophy "Interest" Dristribute development
y Prototype L environment)
Cathedral phase Transition phase EBazaar phase

Figure 1: Free software lifecycle

The basic idea is that open source communities aloappear spontaneously, but through a
continuous process in which the organizationalcstime of the development team is evolving
from a “clan” based governance to a structured camiy having sometimes a rather

sophisticated governance model.

In a sense, one might consider that the legal tyualimaturity goes with the technical quality or
maturity along this cycle.

In the first phase of the development, the devekpee focused on the technical or functional
proof of concept and they often consider legal @assas not essential. The awareness and
organization of how to handle legal issues sho@dtesent at any stage of the development
process, but is very likely to be implemented défely at each stage of the life cycle.

However, an important trend that appears recentit the availability of license check®iis
the external audit of the legal quality of existingen source projects by independent third
parties. The available audits show contrasted tsios with respect to the legal quality of open

* How to Have a Successful Free Software Projedhdmy Senyard and Martin Michimayr
Proceedings of the 11th Asia-Pacific Software Eagimg Conference (APSEC’'04)
® License checkershttp:/sourceforge.net/projects/ostu/http://fossology.org/

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 9 of 64

creative
commons @

BUE

source projects releades

Another trend is the emergence of a new servicesing that provides software intellectual
property management solutions: code reuse anallisesise checking, components license
compatibility for open source or proprietary softarpackages.

The last trend we have observed, in relation wédal quality of open source software, is
initiative aiming at sharing legal information redd to open source components in shared
databases.

1.3 Legal dimension of the software development pro cess and good
practices

Introducing preexisting code or components induiytaaises legal issues: from a legal point of
view, this is indeed a “licensing in” activity thateeds to be regulated by an appropriate
“licensing in” policy.

Introducing a legal dimension into the softwarealepment process raises project management
issues. It is true that some “Open Source” develpmcommunities have a technical
governance structure (college of architects orlamstructures), but they should also take into
account legal governance issues at each matuaige st

This approach (introducing legal dimension in Saf®vdevelopment) must be discussed at the
highest level of the governance structure in chasfehe Software development and must

require its involvement and formal policies statatnélaking into account legal issues, in a

Software development process, raises a rather @gef questions that the project manager(s)
should cope with.

We simply propose to consider legal issues relaaedBCDS as way of coupling a “licensing
in” process — related to code reuse — with anatgtion scheme that is most often a “licensing
out” process.

Figure 2 represents the situation from this penspec CBCDS is assembled for a given
exploitation scheme. Most often CBCDS are aimingedistributed under a given exploitation
license (right part of the figuré)This distribution license choice should be deteed as soon
as possible in the development process. This idittemsing out” policy.

CBCDS is also assembled from preexisting compong@ets part of the figure), having their
own distribution licenses. Such preexisting rawamat should only be used (i.e. incorporated in
the CBCDS) if the license attached to this particyireexisting component complies with a
“licensing in” policy. The “licensing in” policy iglefined at the governance level with the aim
that any license attached to reused componentslmsnygth the “licensing out” policy. In other

® http://www.neolex.se/open-source-audit/databagekmphp?p=contentsr

’ see http://www.blackducksoftware.coov http://www.protecode.conar http://www.palamida.conor
http://www.nexb.com/corp/

8 Except when the Software is exploited in a Saa8emo

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 10 of 64

creative
commons @

BUE

words, any license attached to the reused compaosarimpatible with the license chosen to
distribute the CBCDS.

The “licensing in” or code reuse rules should apee clear instructions on how to use the
reused component or reused source code withindfter&e architecture. It is necessary that the
use of each component within the Software architeatomplies with the license attached to the
component, as the scope of the license is a funatiohow the component is used in the
Software.

Both “licensing in” policy and use rules shouldfoemally defined by the governance structure.

It is also important to do appropriate traininglod developers. They must respect the “licensing
in” policy and use rules of components and souomeavithin the architecture when they used

preexisting components or preexisting source code.

« raw material » Software Software exploitation

 (components) development
O~

J
' AS3F/S 3ddS

= Components

e -—-—-"'
e —— Uamsaranaisiey
, based
rolicy {and collaboratively
Component under i X developed) software
License B ‘-——-______ /| an d use i

J./

Figure 2 : The CBCDS model from the legal issues pective

Part of the IPRT methodology proposed in this repsrsimply a way to check that the
development process respects the “licensing inicpand its rules of usage. These conditions
are necessary but not sufficient to make the rilsieg out” possible.

1.3.1 Freedom Matrix:

The above-mentioned legal questions are basicalgted to two major features of the
development process: the fact that the developnseotllaborative (or not) and the fact that
there is component reuse (or not). We propose teedém matrix (Figure 3) to summarize the
different cases encountered.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 11 of 64

creative
commons @

BUE

CASE 2: Medium risk CASE 4: High risk

(licenses compatibility

) (licenses compatibility)
= g contracts —
o 8 Freedom to exploit ? choice of exploitation license)
w ‘5 .
3 ® Freedom to exploit ?
g
Q3 o
'8 g CASE 3: Medium risk
O g CASE 1: Low risk
K] (contracts —
8 choice of exploitation license)

Freedom to exploit

Freedom to enforce Freedom to exploit ?

No yes

Collaborative development

Figure 3: The freedom matrix

The figure shows four development situations. Tingpkest development situation (CASE 1:
low risk) is non-collaborative projects with no eoeuse. This situation might occur at the early
stage in the lifecycle and is a common situatiora@ademic or research organism software
developments. As there are only components deveélépen scratch, and only one owner, the
freedom to exploit (use, distribute, etc ...) is doeghand so is the freedom to enforce the IPR
associated to the software in case of counterfgdicts by third parties. You should not have to
define a “licensing in” policy, as you do not rewsemponent.

In a second situation (CASE 2: Medium risk), whareon-collaborative development project
reuses pre-existing components, the IPR owner ef Sbftware may not freely exploit the
Software, as he should respect the provisionsefitienses attached to the reused components,
or exclude them in your “licensing in” policy. Inelé, the freedom of exploitation is very often
given by open source licenses attached to the coemp$, with some restrictions on the
distribution license of derivative works (constitairior your “licensing out” policy if you use
such components). Moreover, the upstream compggtibil the license attached to each reused
component with the license of the Software musthecked®. This compatibility checking task
is the cost driver of the legal analysis of Sofevak common pitfall in this situation is to reuse
non-open source components, having a license vathestriction for research applications or
activities, but that would not allow commercial imities™’. This is a typical case of license

° Except when the exploitation model if a SoftwaeAService and the reuse components are underfh/Sfero
General Public License or license having similgalesffect. http://www.fsf.org/licensing/licensegfa:-3.0.html

19 For compatibility refer to “Report on Study of thempatibility mechanism of the EUPL (European WnRublic
License v1.1.0” 11 September 2006 Fabian BASTIN, Philippe LAURENT AvReport
http://ec.europa.eu/idabc/servlets/Doc?id=27472

1 See for example the numerical recipes licenses:{leww.nr.com/licenses/redistribute.html)

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 12 of 64

creative
commons @

BUE

incompatibility with an open source distributiorheme.

In this development model, the owner would have dpportunity to enforce the IPR of its
Software, if counterfeiting acts are reported to lor observed by him.

A third situation (CASE 3: Medium risk) is collataive development process with no code
reuse. In this case, joint owners of the IPR onSbé&ware should agree among themselves to
decide on a common exploitation scheme or licenseF(ench law, each owner, taken
individually, does not have the freedom to takeitfigative to exploit the Software without the
express consent of all the other joint-owners).

The last situation (CASE 4: High risk) is the mosiplicated situation from the legal risk point
of view, as the constraints of the two previoustyaded cases (2&3) apply to it.

As in CASE 3, a joint owner does not have the fomedo enforce the IPR associated to the
Software without the consent of all the other jatners.

1.3.2 Legal risk and legal Maturity

The legal risk associated to software developngenobt the same depending on its exploitation
scheme.

For example, we can consider the extreme caseftW&@e exploited in a Software as a Service
(SaaS) model: this type of software is not “disitéxl”, which means that the license provisions
of its components referring to distribution woulak mpply in most cases (except if the software
contains GNU Affero GPL-like licensed componenkwever, it should be pointed out that the
notion of “distribution” is not clearly defined fro a legal point of view among the different
national law systems and can lead to discussi@ues or in actual court cage

On the contrary, legal risk increases in the cds#istributed software: distribution constraints
and incompatibilities issues between the compohkoesses have to be taken into account.

However, we believe that software legal maturitpdd improve along with its technical
maturity. Indeed, the closer we get to softwafie& release, the more important it becomes to
make sure that its legal status is compatible vglrexploitation scheme, in order to avoid or
limit risks.

Figure 4 shows schematically, in the case of thgted software, that legal acceptable risk or
legal maturity should be reached as soon as pessilsing the development process, and most
preferably before the first release of the Software

2 Harald WELTE, Erik ANDERSEN and Rob LANDLEY, the EE SOFTWARE FOUNDATION vs FREE

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 13 of 64

creative
commons @

BUE

Qualips:: el

time

o
If
First f / Residual

release | rick
.?; (patent, etc...)
& {
B .
@ il
) E I
[M
L 8 table
— daccepta
o oo legal risk Legal trust
2 ,f'l.li

time

K
E S
o

“Cathedral” | Transition Bazaar Phase

Technical maturity

Architectural
prototype

Functional Proof
of concept

Technical maturity

Figure 4: The technical vs legal maturity diagram

The practical consequence is that you should ddfiog your “licensing out” and related
“licensing in” policies preferably before the firgtlease. We call “Legal roadmap” for a CBCDS
the set of coherent and formalized “licensing infigy, use rules, and “licensing out” policy.

1.4 IPR Tracking models

Legal quality of Software could be reached throdgferent ways and processes, but having a
Legal roadmap is a key success factor. This coalgragmatically done by limiting the choice
of pre-existing components for the developers withiimited list of qualified components. This
is an example of “licensing in” policy. Some comanare using such a licensing-in policy and
process and they have set up a database of qdaldertified) usable open source components
for software developments. If developers want t® aigomponent that has not been listed in the
database, a team of experts check it through anieadhand legal validation process, and the
database is enriched with the component if it imgkant with the company policy, or the
component is black listed if the component doespass the validation process.

Figure 5 shows a matrix describing four situatiatepending if the IPR Tracking model is based
on a content controlled process (selection of campbfrom a certified component database) or
if the IPR Tracking is based on a legal status kingcprocess of Software (integration of an IPR
tracking methodology in the development processchvican either be used continuously, as
Software is developed and components are licemsedri used sequentially, only at various
stages of the development process.)

QualiPSo » 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 14 of 64

@EGrmmons @

BUE

)
c
- v o Content controlled Content & legal checking
S E = Process controlled process
E O
S ES
5ET
= =
g E

a
o O _
g o Post-development audit Legal checking

= oriented process controlled process
no yes

Integration of IPR Tracking methodology

to the development process
(continuous or sequential)

Figure 5: IPR Tracking models

The worst case situation is obviously when no leggatus checking process occurs during the
development and when components are not chosen dramalified and sometimes certified
components database. No “licensing in” policy, natool of use rules of reused components and
even no “licensing out” policy (the choice of thestdbution license will be made after the
development.) If a post-development analysis ontasdnot performed, the Software is very
likely to be of low legal maturity and its distritben should represent a high legal risk for the
Software editors/owners.

On the contrary, the best-case situation is whetP& Tracking methodology is integrated to
the development process, legal status regularlgkateaccording to a defined Legal Roadmap,
and when the pre-existing components are selectedd database of qualified components.

1.5 Exploitation intentions and IPR Tracking

However, in this context, we believe it is essdnfiar development managers or governance
committee of the development community, to defiharaearly stage the economical model of
diffusion or exploitation of the Software, mostasitthe “licensing out” policy. This exploitation

scheme is the “Business” model associated withsthfévare. This is essential, as IPRT is

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 15 of 64

creative
commons @

BUE

useless if you cannot compare Software’s legalistaith its exploitation scheme (licensing out
policy).

They are many different exploitation models (bussnmodels) for Software. Although it is not
the purpose of this report to exemplify any expltbetn model, a topic that is addressed in depth
in Qualipso Activity 2, it would be useful to skithrough main exploitation models in respect
with the IPRT issue and to illustrate it.

The formalisation of the exploitation model of tBeftware is a key task, as there is a relation
between the exploitation scheme and how to adapiptbposed IPR Tracking framework to
your own case.

“Service based exploitation”, as suchthe first exploitation or business model tocbesidered
here, as it is always possible to provide servighatever your licensing model is, including
when you have chosen to distribute the Softwareeuadon permissive GNU GPL-like license,
which is the most common business model of opencectompanies. This exploitation mode is
not related to the licensing scheme of the Softyexeept that the service provider may propose
additional warranty provisions in the service caants.

Figure 6 shows an exploitation schemes matrix tdoaters the other main licensing scheme
based exploitation models encountered in softwadtastry.

Exploitation of the Software under Commercial S&a&tware as a Service) or PaaS (Plateform
as a Service), FreeSaaS, or open SaaS model (an &pece Software to be used in a SaaS
mode) is represented within the exploitation matrix

Basically, your exploitation scheme (as a companganization, consortium or community)

could be based on proprietary licensing or douiglenking if you want to get or capture some
revenues from your licensing program. Double licegpsnay be your economical model, as a
community, to get revenues to sustain the developmieyour open source project on the long
term.

On the contrary, if you (as a company, organizattmmsortium or community) do not intend to
capture revenues from your licensing or exploitataxtivities, you can distribute a freeware,
provide Software exploitation under a Free SaaS enadt license the Software under a
permissive license.

The Software exploitation model could be distribatior software as a service. Distribution
could be done under proprietary license, open soudiense, or dual licensing based.
Combination of models or mix exploitation mode Isogpossible

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 16 of 64

creative
commons @

BUE

Permissive
Licensing

Freeware
(Free SaaS) (Open Saas ?)

no

Proprietary Licensing Double/Dual
Licensing

yes

(Commercial SaaS)

Capture part of the value
(except on service activities)
.%/E\

no yes

Give access to the source Code

Figure 6: The exploitation schemes matrix

For example, if the exploitation model is basedaotSoftware as a Service” architecture and
that the service provider doesn’'t want to give asc® the source code of its software, legal
analysis could be simplified, as there might not d®y code distribution (server side).
Components under GNU Affero like license have tademtified in such case, as GNU Affero is
aiming at obliging access to the source code alaive works or composite works for third
parties, even used through Software as a servaetecture, with no physical distribution of
binaries or source code. With such SaaS exploitatitentions, the “licensing in” policy must
contain interdiction to use components under GN&#if Public Licence.

Another example is the case of a software editoosghaim is to distribute component-based
software under a proprietary license (licensing maitcy) that integrates GNU LGPL or other
permissive licensed based components (licensipgliny). He should avoid GNU GPL licensed
components, or avoid integrating GNU LGPL codeaftBare’s proprietary files.

Sometimes, the strategic intention of the managéntencerning the exploitation model
(licensing out) of the software might change dutimg course of the development process. Such
changes might lead to high reengineering costenfippnents having non-compatible licenses
with the new “licensing out” policy were used dwithe development.

One can also imagine that regulated business mmtgbtduce responsibilities constraints, such as
Software for critical applications (example, softevéor medial application or used in domain of
space and defense) and IPRT methodology shoulaneel taccordingly.

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 17 of 64

creative
commons @

BUE

The governance committee in charge of the developrerategy might also have diverse
control strategies of the architecture, technical asometimes scientific choices, or of technical
guality and maturation process. It is often a comcw early developers to control the
development to avoid “forks”.

For example, the QPL license is considered asemdie tool which is adapted to Software
maturation, and which allow avoiding premature K&rfor technical divergence by providing
exploitation centralization. IPR centralization kassignment is another control strategy
commonly used for the FSF projects, by the FSF.

Another issue is the enforcement of the license lyae chosen to distribute the Software you
have developed if a third party did not respecAsisignments of IPR of contributors might be
necessary if you intend to have reasonable transacosts before legal action. In large “open
source” projects with a high number of contributoveners, the agreement of each owner is
necessary for entering in a litigation processr@l,tat least for counterfeiting actions. This
might be almost impossible if IPR centralizatiorthwassignment of contributor’'s IPR was not
the model chosen and if joint ownership was preter(where each contributor keeps its
ownership and provide its contribution under a catilpe license). IPR acquisition of
contributors should be part of the development ggsaf the Software editor wants to enforce
the license against counterfeiting third party. Fcy of some FSF projects is based on such
IPR centralization model (i.e. GCC project for exdenand related key components — MPFR,
etc...)

The choice of joint ownership versus IPR centraéilimais of importance for the governance
committee as it strongly shapes the IPRT and manageprocesses during the Software Life
Cycle.

To sum up, the IPRT process you should have tgdesid implement from the QualiPSo IPRT
framework could be function of when you intend ®&eut, of the complexity of the Software
architecture, of its technology, of the exploitatijglan and of the enforcement intentions you are
considering. For example, if you are a company fhahs to use open source components to
develop a piece of software that you intend natistribute, but to propose as a SaaS, your IPR
Tracking process might be simpler than for CBCDtBafe developed by worldwide distributed
teams or individual contributors to be distribuged! defended by the editor.

1.6 IPR Tracking QualiPSo deliverable objective and structure of the
report

It is not the purpose here to define a rigid framevor “THE” universal IPRT methodology
adapted for any software development. On the contthe objective is to present a simple
framework and a set of key issues, both techniedlaganizational, that one should adapt to its
particular case or its own software developmentess.

In the next section, the goal and objective of RRT methodology are presented as well as the
main concept for IPRT, the Legal Status of Softwditee following section proposes an IPRT
methodology and finally, the last section descritheskey elements that have an impact on the

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 18 of 64

creative
commons @

BUE

legal status of the software. The developers hakeyarole to reach a Legal Status that is
compliant with exploitation intentions or model thfe editor, as the Legal Status is formed
through their actions and with this respect, steddlgood (IPR) development practices” are of
tremendous importance.

In a certain sense, Audit phase for Legal Statusdtization is a measure of developer’s ability
to take legal dimension into account during theeltlyment process.

The Audit Module described in this report is anrapée of IPRT methodology implementation.
This Audit Module uses a questionnaire to defifpexrceived” legal situation, as described in
the corresponding section of this report. This tjoasaire is presented in Annex 1.

It is specified that the Audit Module was usedhie tontext of PALETTE, an FP6 EC project.
Its results are presented in Annex 2 as a casg.sumhex 3 briefly presents the Audit Module
and IPRT methodology used at INRIA and a complseaase (DIET) exemplifies the section
4 (Audit) of the report. The aim of the DIET projéwith Frédéric Deprez, Eddy Caron, David
Loureiro and Aurélien Cedeyn as core developersirnsng at developing a set of tools for
building computational servers.

13 http://www.inria.fr/actualites/sc07/art1.en.htonl hitp://graal.ens-lyon.fr/DIET/

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 19 of 64

creative
commons @

BUE

2 Project management and Legal Status

2.1 Implementing the IPRT Methodology: defining too Is and
processes

The aim of the IPRT methodology is to provide aclgicture (Legal Status) of the intellectual
property rights associated to the Software andyoad its components as well as all other legal
constraints that may exist.

From the point of view of project management, tteagement team is responsible for defining
the process and tools used for IPRT. They have to:

- Set up appropriate training sessions for develogersfoster “development good
practices” and legal issues awareness within tharozation, if necessary.

- Define a clear and formal (not implicit) legal deamment roadmap “Licensing out”,
“licensing in” and related use rule (to make sumattthe Software’s legal status is
compatible with the exploitation scheme)

- Inform and train developers to be aware of thisalepadmap and especially of the
“licensing in” policy and use rules of reused comgots and IPR Tracking process to
follow

- Choose whether they empower the development tedalldav the IPRT process on their
own, or if they prefer to separate the developnaewt the -legal- quality control, as we
recommend hereafter (and as it is normally the casemost organizations for
development and quality assurance).

- Choose if they would prefer internal audit struetar externalization of the legal Quality
Control (outside the organization) or partnershifhwexternal service company. (Typical
make, strategic partnership or buy decision).

- Define the IPRT methodology that will use to detiererLegal Status of Software

- Define when such IPRT Methodology should be usedlifferent stages of Software
development or exclusively at the end of it?)

- Check compliance with exploitation intentions absbn points in time (as soon as
possible at the beginning of the project, and ug@alytime a new release is planned)

We wish to insist on the point that the IPRT Methlody can either be used as:
1/ a “support tool” during Software development:

IPRT Methodology is used at different stages ofdeeelopment process, in order to be sure and
confirm that Software’s legal maturity increasesd anproves along with its technical maturity.
This should usually be the case if all the actorsolved (developers, lawyers...) are kept
informed of intentions and development strategy, @nany change occurring to it.

For example, depending on the strategy adopteen@iag out), developers may have to refrain
from using pre-existing components submitted tadiqular license (licensing in - exp. GNU
GPL license if the objective is to distribute Scdte under a BSD license). Lawyers may have to
be careful to avoid writing research contracts wRhclauses incompatible with intention of
exploitations.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 20 of 64

creative
commons @

BUE

Taking into account the strategy and try to renw@herent with what we believe to be “good
practices”. In the context of IPRT Methodology, assume that people are respectful to such
good practices. However, we also believe thatimigsortant for a company, an institution or an
organization to make sure that people involved pragect are aware of such good practices. If
necessary, such people should be trained.

Consequently, this skilled and trained team can theeexpected to perform a high level of self-
controlled activities and to develop high legal lgyeSoftware, both due to their awareness of
good practices and their compliance with the exalmin goal and the corresponding
development strategy.

2/ a tool for “emergency” cases or a final validati

This is the case when the IPRT Methodology is uledthe first time at the end of a
development process or when it is used when prableamncerning the software arise (for
example when software’s legal status is suspecyea third party to be incompatible with its
current exploitation scheme).

The IPRT Methodology will usually be, in this coxttemore time consuming, as it may be more
difficult to apply to Software, as it might be maddficult to go “back in time “ to gather the
information which is necessary for the analysis.

In addition, if it turns out that no developmentagtgy has been defined accordingly with

Software’s exploitation scheme, the risk is that #nalysis may reveal that Software’s legal
maturity is far from being sufficient in order tnit legal risks.

2.2 Introducing the notion of Legal Status

Before entering the details of the proposed IPRThoublogy, it is necessary to define its main
feature and the main object it manipulates: theal &gatus to be tracked down.

Defining the global Legal Status of a Software @ayekis not obvious and there is surprisingly
very few academic works on this tofficHowever, it is a key point to reach a standadiize

definition that would be used for IPRT. AlthoughRIP methodologies and tools to determine
the Legal Situation of Software might be specificat given organization, there is a need for a
generic Legal Status definition that would allonclkeange and communication on it. One could
even imagine that the components themselves witlisigibuted with their Legal Status. What

we propose hereafter is a rather abstract defingidhe Legal Status of Software.

This definition specifies a minimum set of categeror elements, which have an impact on the
way Software may be used. This allows to determsungsequently the possible ways of using
and exploiting this Software, and to determinéhdyt are compatible with the exploitation goals
that have initially been chosen.

14 Open (Research) issue toward a legal frameworlo®®, FOSDEM 2008 ROUSSEAU

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 21 of 64

creative
commons @

BUE

We propose to base the definition of the LegaluStah a set of only four following elements:

The position of the software in the chain of rights

- The ownership of intellectual Property Rights af Boftware

The legal conditions covering the exploitationlod software

Other existing enforceable IPR against software

Moreover, we have to define a minimum set of charastics for each software componéie
propose the following set, which has to be discusbeand standardized for automated
recursive components analysis (each combination @omponents can be seen itself as a
component).

- Component Name: For component identification

- Component Status: From the development of a G&8t of view, a given component could
be an original work written for the purpose of tbBS, a pre-existing component used “as such”,
without modification in the CBS (not modified anter work), a pre-existing component
modified to be used in the CBS (modified anteriorky.

- Composition Rules: Information such as naturknéds and dependencies between components
should be defined here (categories to be stanaatdis

- Version: for exact component identification

- Functional zone: it is necessary to know, in tbatext of the IPRT methodology, in which
functional zone the component is located (corenédder.).

- Localization: It could be the localization in epository, in an archive, in a distant server or
others.

- License: The license attached to the componehe Ticense denomination is also a
characteristic that would need standardisation.

A. Position in the chain of Rights

The Software can either be:

. An initial software: refers to software which hast been developed on the basis or by
integrating (or extracting from or translating) yias software.

. A derived software: refers to software for whithleast one file containing source code

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 22 of 64

creative
commons @

BUE

has been modified by applying sets of derivatidasu

. A component-based software: refers to softwaralemaf different components by
applying sets of composition rules (given that mmponent can also be itself a component based
software).

The “component” term itself could be subject tocdssion. It should be considered in this
methodology in the broader sense of software “Brick

B Owner of Intellectual Property Rights (IPR)
The ownership has to be identified for both:

. Moral rights: in most national laws, authors #ine exclusive owners of their moral
rights. In France, moral rights are indefeasibl@lienable, perpetual and can not be transmitted
(notwithstanding some exceptions, such as for el@ainpxemburg Law, which allows an author
to assign its moral rights). However, in the cabasadtware, these moral rights are generally
limited compared to those of authors of other meafecopyrightable works.

. Patrimonial (economic) rights: they can eithetohg to the author, be automatically
assigned (example: from an employee to an emplaydsg contractually assigned.

C. Legal conditions of exploitation of the software

The exploitation (and use) of a component can pallierestricted by several means:

. Exploitation is restricted by a license: for exde) the GNU GPL forbids distributing
any modified software under another license.

. Exploitation is restricted by an agreement (othe@n a license): this can be, for example,
a joint property agreement which forbids each p#otexploit the software without the other
party’s previous consent. Another example is treeaa Software developed under EC funded
shared costs actions, where the Legal Status idy pdetermined by the so-called general
conditions of the model contract with the Europgaammission jointly with a specific
consortium agreement, defining what are the s@ddlhccess rights for use”(exploitation)
granted to partners and/or third parties.

. Exploitation is restricted by Law: for exampl® case of joint ownership and in the
absence of a joint ownership agreement, Law canaesxploitation. Another example may be
export restrictions (forbidding distribution to serspecific countries).

. Exploitation is restricted by another bindingeralr legal provision (judgment)

Tracking down the legal conditions of exploitatimmsometimes costly, time consuming and
would require assistance by a legal counsel.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 23 of 64

creative
commons @

BUE

D Other enforceable IPR against software

Some intellectual property rights (that may beldogthird parties) may conflict with the
exploitation of the component:

. Patent: it is however limited to the territorigbere it has been filed and registered.

. Trademark: it is usually the name of the softwaral is limited, like patents, to the
territories where it has been filed and registerea trademark. Trademarks issue may limit your
ability to exploit Software under a given name.damarks are often used as a mean to control
forks, or to make them explicit. To illustrate tipsint you could refer to the interdiction to
redistribute modified versions of the official Mdai™ web browser release under the Mozilla™
name and by using Mozilla™ logo (visual trademaii)is obliged the Debian™ community to
distribute its Mozilla™ modified web browser undkee Iceweasehame.

. Copyright (name of the software, images, icons,that may be contained in the
component): unlike patents or trademark, it autoacally benefits of a worldwide protection.

. Others elements used with, or integrated intoSb#ware: it may be for example data
base subject to “sui generis” rights in Europeamw,L&entified know-how protected by
confidence...

E Representation of the Legal Status

This set of four elements enables, in our viewhawe an automated process for the recursive
determination of the Legal Status of complex amgdaoftware: indeed, both software and each
of its component’s Legal Status can and must berated this way.

A representation of this Legal Status is suitalieorder to be implemented as a software
component or module for Legal Status determinatibat would be used by software
development managers as a core service in the xtootevarious organisations or software
development environments, such as the QualiPSot‘@ereration Forge”.

2.3 Intellectual Property Rights Tracking methodolo ay

2.3.1 General

An "IPR tracking methodology" provides a method ethdetermines the legal status (LS in the

sequel, including rights and obligations, copyrggahd authorship when available, origins of the
work for dealing with export control rules,...) @software at any stage of its development. It has
to be applicable at least in the various develogrséoations considered by QualiPSo (in the

development or collaborative tools).

IPRT is a rather complex activity, that would inv@lboth a dedicated team having various skills
(technical, legal, managerial, quality control),dandledicated software tools to improve
productivity, such as software tools providing am#&bic code mining (license checking and

QualiPSo « 034763 » A1.D2.1.4 « version 2, dated 16/12/2009 « Page 24 of 64

creative
commons @

BUE

compliance, source code comparison, statisticairtieyy tools®, etc).

Such tools make it possible to perform the IPRTregtsonable costs, quality and duration.
Moreover, this automation of IPRT process is a ssgitg for large CBS, with large number of
components (the largest CBS could reach more #tramillions lines of code and more than one
hundred thousand components, typically CBS routinek more than a dozen components.)

Each entity or company has its own governance,mgton, rules, development environment,
processes, and regulation constraint for softwaseldpment. Consequently, the methodology
presented hereafter is designed at a level of atigin that aims to be generic enough to be
tailored for any given organization.

2.3.2 Scope of the IPRT process: what is analyzed?

In order for the IPRT process to be effectives inecessary to define its scope, by specifying the
elements that should be considered as part of agdtto be analyzed.

Indeed, should an element be forgotten, the arsalysuld turned out to be incomplete. This
would lead to the interpretation of an erroneougdl&tatus and subsequently, to an exploitation
of a software in good faith but nevertheless unsefrom a legal point of view.

We believe this scope should be defined at twaeekfit levels: a legal one and a more practical
or technical one.

a) Scope from a legal point of view:

The different elements which should be consideredeing part of a piece of software are
defined by law and/or case law. This would themefosually include in some national laws (in
particular in French Law) source code and objealecoobviously (including pre-existing
external components’ source code), but also theifsgaion of the software and preparatory
documents.

Elements identified by law as being part of Sofevahould therefore fall in the scope of what
should be analyzed.

b) Scope from a technical point of view:

Software is often made of various and numerous oompts of different nature (core’s
components, libraries...), sometimes in a complekitgcture. It is therefore important, for the
purpose of the audit, to define precisely what congmts are part of Software and should be
analyzed. It is the reason why we believe thattailéel description of Software is necessary (see
point 4.1 hereatfter), in order to know what is atifugoing to be analyzed.

15 such as StatSVN http://www.statsvn.org/

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 25 of 64

creative
commons @

BUE

Audit team

The audit team is the first and the most obviotsriacutor in the context of IPRT process. For
the purpose of the present IPRT process, we betleya@udit team should include developers,
but also IPR lawyers/legal counsels, the transterlsing manager, the product manager and any
other person involved in software development’'s tf/cle: both legal and technical skills are
needed to use the IPRT Methodology.

Indeed, although IPRT Methodology is applied tdwafe, there are numerous legal issues, such
as license compatibility, IPR clauses in contraicksntification of authors’ status, on which it is
highly recommended to work with a lawyer. This isoarecommended for responsibility
reasons, as lawyers are the authorized personga@agunsel or an advice on legal matters.

The development team and contributors should therdfiave an awareness of the legal issues
associated with Software. This implies that theeftlgyment team should be provided with
appropriate “good practices”, training and quatibntrol support. For the purpose of the present
IPRT process, we assume patrticularly that a goeel lef “-legal- development good practices”
is implemented within the development team. Thismse for example, that developers do not
delete existing headers or do not modify licenseched to external components, without formal
authorization of the IPR owners of the external ponents. We also assume that the developers
do not try to hide the origin of external code, l®engineering it, changing the names of
variables or doing other non authorized practi¥és.assume “development in good faith” when
it comes to use of pre-existing components

Nevertheless, developers should be aware and iefbrthat advanced code reuse detection
technologies can detect unfair practices or coteiterg of that kind; “development good
practices” must be the rule and other practiceslghoe strictly prohibited.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 26 of 64

creative
commons @

BUE

3 Key IPRT issues during the software life cycle an alyzed by
the IPRT Methodology

The IPRT activities, occurring during the develomiprocess, are aiming at identifying and
mastering elements that have an impact over tled $tgtus of the software.

The objective in this section is not to preseneahaustive list of such elements, but rather to
concentrate on the elements which we believe Hasttongest impact on the legal status.

3.1 External or exogenous components

A pre-existing external component (sometimes retemo as “Pre-existing know-how” in EC
contract definition) has its own legal status, ahitetermines the ways it can be used (part of it
is of course its license). Consequently, this camemd integration or combination in software
may impact the latter, if the component legal fasunot compatible with software exploitation
goals.

For example, if your aim to release a Software urad&NU GPL V2 license (“licensing out”
policy), then you should make sure that you doimggrate a component with a license which is
incompatible with the GNU GPL V2 — “licensing inbjicy — (such as a routine coming from
the Numerical Recipes book, which is not compliaith the open source definition and which
is not compatible with the GNU GPL, because the Biucal Recipes license does not allow
commercial exploitation).

Another consequence is that using an external casngoor pre-existing code may prevent the
freedom to choose a license for Software. For exanifpGNU GPL components are integrated
in a newly developed software, there will be ndteotchoice but to distribute Software under a
GNU GPL license.

Identifying and auditing the legal status of extéroomponents, to be combined or integrated
into the software, should be clearly done befoee fhoject starts and during the development
process, each time an external (exogenous) codtegrated.

3.2 Authorship and ownership

It is obviously superfluous to explain here how IBWnership strongly impacts software legal
status. However, it is important to remind thathauship and ownership are closely related but
different notions, as the first one usually detem@sithe second one.

Indeed, in some cases, the author of softwarealgtl be the owner of related IPR according to
Law. In other cases, although the author is nobtheer of patrimonial rights, its position as an
author and its status allows to determine who dgtis the owner of software’s patrimonial
rights (for example, according to French Law, wilea author is an employee, its employer
automatically becomes the owner of the patrimomggits).

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 27 of 64

creative
commons @

BUE

It is therefore essential to identify all authotsaay development phase, especially in the context
of collaborative development, which logically invek a greater number of actors with various
statuses. Depending on the goals of exploitationywbo are the authors and the IPR owners,
IPR assignments may be necessary to secure the @haghts or to facilitate the enforcement
of IPR.

For example;
- When part of software development is subcontractaday be appropriate to specify in
the corresponding contract that the service prawagsigns its IPR.

- The Free Software Foundation (FSF) centralizes dPBontributions to some key FSF
projects — i.e. GCC, by assignment of IPR from gbuators to the FSF, although GCC is
released under GNU GLP license, to facilitate esdorent of IPR

This leads us to the next point: it is also impafrtan this context, to be able to determine
wherever a person is an author or not. Indeed, mumsepeople can step in the development
process of software, yet not all of them may besa®red as authors, from a legal point of view.
In order to determine if a person actually is arhay the project manager or its IPR

lawyer/legal counsel must refer to Law and casédlawteria.

For example, according to French law and case &werson is an author when it directly
contributes to an original piece of intellectualriworhis means that a person who merely gives
instructions or advices may not be considered amuéimor. In the same way, people performing
tests and other evaluations are not usually coresiid@s authors, unless their activity brings them
to propose original source code modifications, dtves critical problems that occurred during
these tests or evaluations.

On the contrary, people writing specification, @egiory documents and generating source code
are definitely considered as authors.

3.3 Contracts’ provision tracking

Software may be developed over many years in theegbof various, successive and numerous
different contracts (EU projects, bilateral agreatagdevelopment consortium agreements...),
with different partners. Each contract may hagseiwn specific IPR clauses.

If a development strategy has been previously ddfiffior example: IPR centralization) and this
strategy has been taken into account, when nemagfignd writing the contracts, we can
reasonably expect all the different IPR provisiddsbe coherent, as well as compatible with
Software’s exploitation scheme. However, if sudtrategy has not been defined, contracts’ IPR
provisions may be very different one from anotlmcpherent and incompatible with Software’s
exploitation scheme.

For example, if an organization wishes to explaft®are in a dual licensing scheme, with an
exclusive proprietary license, this may be impdssifit turns out that:

- Software was used and developed in different cotsravith IPR provisions according to
which all results are the joint property of thetyes;
- The joint ownership agreement provides that eadht jowner may only give non-

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 28 of 64

creative
commons @

Qualips:: s

exclusive sublicense on Software, with the othamt{s) owners(s)’s prior approval.

For this reason, we believe that this part of thalysis should not be neglected.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 29 of 64

SEHNNE)

BUE

4 Presentation of the Audit module

4.0 Overview

The IPR tracking methodology implies to proceedhvaeveral audit phases, to make sure the
development process has produced a legal statushwhicompliant with the exploitation
strategy of the Software, or which allows to pearfocorrective action(s) to modify the legal
status accordingly.

The Audit module is based on six steps or phases:

A dedicated Audit team is set up (see 2.3.2.1).dlment team provides a detailed description
of the software (1.) Goals and objectives of thditaare defined (2.) Legal status is determined
by comparing “perceived” legal status — based gnestionnaire (Annex 1) — and “determined”
legal status — based on a code mining tool sudtC&Sology™ (3.) Problem Identification and
Risk Evaluation is operated (4.) Critical probleoitveng is performed (5.) Residual Risk (if any)
is covered (or at least evaluated) by insurancerbeafissemination/distribution (6.)

1. High level
Description of the software

{Description of the softwara
Architecture, functonaities, madules or companants)

STRATEGY / AUDIT PREPARATION

A

2. Definition of the scope
of the Audit
{Main oojectives)
A 4 ¢
3. Determination of the Legal
COLLECT FACTS Situation -
v
4. Problem Identification
h 4 and Risk Evaluation
ANALYSIS / CORRECTIONS L
5. Solve Blocking/Critical -
Problem
\ v

8. Insurance, Dissemination

TOWARDS EXPLOITATION and IPR tracking

Figure 7: Methodology overview

The draft version of the methodology has been de&ieaudit software in PALETTE EC FP6
ICT project and to prepare its exploitation plann@x 2). It also has been tested at INRIA, to
analyze the DIET software, in order to validateeitploitation scheme.

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 30 of 64

creative
commons @

BUE

The DIET case will be largely used hereafter tasiliate the IPRT Methodology different steps.

4.1. Step 1 : High Level Description of the Softwar e

A high level description of the software is mandgtim allow actors to have a shared functional
representation of the software, which is necesadyscuss the audit or analysis’ objectives.

This description also enables the Audit Team taldsth a relation between information
gathered during the audit (for example a reseagthement), the component(s) concerned by
this information and its (their) location in SofteaOf course, this high level description will be
regularly updated with the technical evolutionlod software.

We believe that a high level description is basedhoee different levels (two mandatory and an
optional one):

- A general description of Software at largestasgaptional and only if pertinent)

- A description of Software’s different functionabnes and their interactions between them
(mandatory).

- A description of each functional zone detailihg different components that are part of it, as
well as their interaction and dependencies betwieem (mandatory)

Such description should help the audit team tordeite the perceived legal situation, as
explained in step 3 hereafter.

QualiPSo « 034763 » A1.D2.1.4 « version 2, dated 16/12/2009 « Page 31 of 64

creative
commons @

Qualios::

Quality Platform for Oper

4.1.1 General Description at largest scale:

This representation or architectural pattern ofsbiware is at the largest scale.

APPLICATION APPLICATION \ APPLICATION | \—RPFUC&T{ON ‘

GRID APPLICATION

API
Saga

XtreemQOS

|a....‘...g.,_.. 5 .

y i B
=~ itar &

el DU

t

ymnouter i :

“ Lomputer *

Figure 8: XtreemOS overall architecture

Figure 8 represents an example of such a descrigtio the XtreemOS EC funded software. The overall
objective of the XtreemOS project is the desigplamentation, evaluation and distribution of an ope
source Grid operating system (called XtreemOS) wittive support for virtual organizations (VO) and
capable of running on a wide range of underlyingtfirms, from clusters to mobiles. On top of the
XtreemOS operating system layer you can plug agipbies or a middleware. On top of this middleware
are plugged specific applications.

| Gind Applications | User Software

| XireemOS API (SAGA & Posix-like) | A

| V) & Security Management | |Appiic&1icn Execution Ma.nagemem| | Data Management | XtreemOS-G

| Infrastructure for Highly Availsble Scalable Services | vV
AN

| Extensions to Linux for VIO Support |

KireemO3 Grid 08

XtreemOS8-F

| Linux | | LinuxS1 | | Embedded Linux |

vV

I |

Figure 9: XtreemOS layer description

Such representation is only pertinent when Softwaneart of a larger and complex structure
made of several Softwares. It should therefore dmapteted with a more precise functional
description of the Software, as indicated hereafter

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 32 of 64

SEHNNE)

BUE

4.1.2 Description of functional zones:

The first mandatory level of description requiredthat of Software itself, by detailing the
different functional zones and their interactions.

The DIET case:

Modules | Examples
T
} |
DIET CORE
A
v v
Detailed in | Not detailed
this Qualinso Tools > fglfg}; .
deliverable _ _egR.

Figure 10: High level Description of DIET'’s functional zones

4.1.3 Description of each functional zone:

Such description should specify the components &auttional zone is made of. It should also
indicate, for each component:

- its license, if any;

- if the component was developed specifically fbe tSoftware or if it is a pre-existing
component (and if it has been modified for the psgof the project);

The DIET case:

The Software is described as a set of functioredsr

Figure 11 is a more detailed description of DIETréCand DIET Modules functional areas. In
this report, we will focus on these two functioaatas, but similar treatment was done on DIET

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 33 of 64

creative
commons @

Tools functional domain.

BUE

Infarmation Sos

% iTT— ‘ - DIET Daada | uUID
o | Mandatory ‘ Mandatory Crtenal Mgrdatony
DIET Wf Xerces C++
DIET Ex. DIET Corresp. Module Optional Mandatory
Optional Mandatary DIET JuxMem JuxMem
% ! L =
s [- }
= S Optional Mandatory
& DIET BLAS BLAS =1
g = or P - ;
- \
8 Optional Mandatory LY = DIET CoRl
] i Yoo,
| s 5 Optional g
Y 2 S
i 9 >
o ATLAS BLAS = DIET Batch DIET CoR!
= o —
Mandatory Mandatory Optional Mandatory
DIET Tau Tau
|| DIETModule — dependence (link) SR T
o External Library == correspondence
z
i i
8 ki baifie DIET Multi-MA
|
Licence :
Status Optional

Figure 11 DIET Detailed High Level Description Furctional zones

4.2 Step 2 : Defining intentions

If this has not been done previously by the goweteacommittee of Software, or by the core
developer’s team at earlier phase in the lifecyéléne project, a key preliminary action of the
Audit team is to formalize the exploitation plamdato have it validated by the governance
committee.

If these goals and objectives are not defined ctyethe audit's relevance will not be
optimized. Indeed, once the audit is done and titeah Software’s Legal Status established,
goals and objectives will be used together witls thegal Status during the analysis phase, in
order to determine if both are compliant (as exmdiin step 4). If it is not the case, some
corrective actions may have to be taken to solemtified problems (as explained in step 5)
before preparing the final release (step 6).

QualiPSo » 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 34 of 64

creative
commons @

BUE

The DIET case:

Although the DIET development project has started)lbefore the Qualipso project, developers
had an implicit “Legal roadmap”:

In the DIET CASE, the exploitation intention wasl@uble licensing scheme : an open source
licensing under the CeCILL license and to keep eme=d the possibility to offer proprietary
licensing (licensing out policy). For these reasotie development strategy that has been
adopted was clearly non collaborafi¥during the “cathedral phase” and development voaed
by reusing only external libraries distributed ungermissive licenses (licensing in policy).
Although enforcement has not been clearly discysgedias however obtained due to the
resulting “de facto” IPR centralization scheme.

4.3 Step 3 : Determination of the Legal Status

4.3.1 “Perceived Legal Status” by the developmenta nd audit team.

3. Determination of the Legal Situation (s)

Questionnaire Automated
(Hsi e scluers Legal Status Mining
Legal situation T
is perceived "59,§§ng§¥” (llked)
by the development (realization of a Legal Situation
Project Management team) from a source code archive
by automated tool(S))
| I
Perceived Determined
Legal status Legal status
(LS1) (LS2)

\./

Next Step: 4. Problem Identification
and Risk Evaluation

Legal status analysis
(LS1,LS2); A (LS1,LS2)

Figure 12: Step 3. Legal Status determination.

As said in a previous section, Software’s desaipts a great help to define the perceived legal
status LS1, as it enables to collect a minimumnédrmation that should be analyzed by the
Audit team.

A questionnaire is then given to the Audit teamestablish a “perceived” legal status LS1.
Annex 1 presents a proposal for such legal staimplate, as well as a flowchart-questionnaire,

% The double licensing scheme supposes an |PRatieation (in fact a partnership among French Acaide or
French research entities.)

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 35 of 64

creative
commons @

BUE

and guidelines and illustration to help the Audarn to fill the template. The aim is to gather the
necessary information to establish the “perceivedal status.

The template is aiming at qualifying the Softwanel gathering information about the software
content which is related to legal status’ elementssented in section 2.2. Such information
concerns, for example, modules that compose Sdftwarits different functional zones, the
authors of the modules or components, the legalimdition concerning the legal conditions of
production of the components (such as researchramis), the licenses attached to them. The
objective is to complete and fill in the four cabeigs that compose and allow defining the Legal
Status.

This “perceived” LS1 allows to confirm if Softwateas been developed accordingly with the
exploitation, control or enforcement intentions, toridentify one or several LS1’'s elements
which are not compatible with these intentions.

However, it possible that this “perceived” LS1 mcamplete or inaccurate for various reasons.
For example, the notification of an external comgdmmay have been forgotten.

The DIET case:

Figure 13 shows the perceived legal situation leydévelopment team. It consists of :

- The high level functional areas description witldescription of the links among the
components, and the perceived license attacheacto@mponent.

- The owners and authors of each component

- 3 research contracts under which some modules pvedeiced

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 36 of 64

creative
commons @

BUE

Figure 13: DIET perceived legal Status

The developers provided additional information saslthe list of authors and related
information (position, employee or interns, etc...)

4.3.2 Determined Legal Status

In order to determine the Software legal statuss ihecessary for the audit team to further
analyze all information gathered on Softwale.s also highly recommended, in order to
establish a determined legal status, to “scan”v&o#& using mining tools such as Fossology.
Such tools allow to discover the existence of umiified licenses.

Each “perceived” or determined” LS can then be camag and discussed. The possible
differences between LS1 and LS2 are also studiked.LS resulting from this analysis becomes
the base of problem identification.

The DIET case:

In the DIET case, the determined legal statusuiid out to be different from the perceived legal
status:
- a component license had not be fully analyzed;

- questions were raised concerning one of the asitetatus and affiliation;

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 37 of 64

creative
commons @

- the three research contracts that supportedabhelapment of DIET were gathered,;

- an availability search on the name DIET Solve masle by trademark attorneys, in order to
check for any prior trademark (or another priotidiive sign);

- FOSSology was used to look for any unidentifiedrises (for INRIA’s components as well as
pre-existing components);

4.4 Step 4 : Problem Identification and Risk Evalua tion

Figure 14: Step 4. Problem identification and riskevaluation

As mentioned in step 2, the comparison betweemxpéoitation, control and enforcement goals
and the LS enable to determine if Software actuallsompliant with these goals. In case one or
several elements of the LS are not, this compadlows identifying what are the problems and
obstacles.

Legal status allows to identify the following prebis, in particular:

Authorship problems when author are not identified.

Ownership problems when relationships (if any) ket author and employers are
unclear.

Component License text problems: component withilegnse or with unclear or
incomplete legal notice (notice such as “all riglgserved”).

Component with unclear or fragmentary license idieation or name.

Undefined version of the license.

Incompleteness of the license text (text modifaati lack of integrity)

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 38 of 64

- Incompatibility problems between the licenses &itaicto different components.

- Technical-legal problem

- Other problems such as packaging problems: compeoedandancy, component present
in the packaging, but unused in the software, etc...

Once these problems are identified, the Audit téaes to solve the problems when this is
possible, or identifies otherwise those remainintical, as explained hereafter.

In the context of DIET Case, the analysis showed:

- License incompatibility between components undeCICk v2 license and components
under GNU LGPL licenses;

- Component TAU's license was unclear;

- One of the authors’s status is unclear and prevesnsg a reliable list of patrimonial
rights owners on Software;

- The trademark scanning search revealed that DIEF ma use in the exploitation
domain of DIET software.

Figure 15: Blocking problems identification for DIET

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 39 of 64

4.5 Step 5 : Solve Blocking/Critical Problem

Figure 16: Step 5. Solve Blocking/Critical Problem.

A critical problem is a problem that is blockingetlxploitation of the software. It can be, for
example, the existence of a component developedrbguthor under a proprietary license,
which would therefore be incompatible with the disition of the Software in which it is
integrated under a GNU GPL license.

Critical problems are solved by the developmenintdxy taking appropriate technical or legal
actions, whenever possible.

Problem solving by developers

The developers can solve problems, each timepbssible for the team to take an appropriate
action on a “critical” component (which licenseingompatible with license scheme). This can
be done by:

- component elimination (when such component is edtriically necessary);

- component rewriting;

- component substitution by other existing comporteting similar functionalities but

different legal status (compatible with the softevaxploitation plan);
- distributing the component separately from Software

QualiPSo * 034763 » A1.D2.1.4 « version 2, dated 16/12/2009 « Page 40 of 64

Problem solving with legal action

Problems can also be solved with appropriate legibns, when they cannot be solved by
developers or when it seems more appropriate §amele, regularizing the situation between
joint owners of a critical component can sometirbedess time consuming than rewriting the
component). For example, this can be done by:

- Negotiating another license on a critical componith its owner, which is compatible
with Software’s exploitation plan;

- Negotiating an assignment of IPR on the criticahponent;

- Provide the component’s license with an exception.

Unsolved situation might however occur and leagrtgect stopping, unless it is decided that the
risk should be taken, which remains both the Saftveavner’s choice and responsibility.

The DIET case:

In the context of DIET, the following solutions veeiound:

- Incompatibility between CeCILL v2 license and GNGRL license did not turned to be
a real problem:

The development team was aware of the license ipathility but knew that it could be
avoided by distributing the GNU LGPL componentsasately.

Another solution (a legal solution) was identifiedalso turned possible to add an exception to
the CeCILL v2 license to allow linking with the GNLGPL components in DIET, as INRIA has
the required IPR to do so. This solution turnedtoute the simplest.

- TAU'’s license:

INRIA’s lawyers contacted TAU’s owners in orderhtave confirmation that TAU's license is a
BSD-like license. This was confirmed.

QualiPSo * 034763 » A1.D2.1.4 « version 2, dated 16/12/2009 « Page 41 of 64

Figure 17: Final legal situation of DIET after problem solving.

4.6 Step 6 : Insurance, Dissemination and IPR track ing

It is sometimes not possible to identify the origira component or its authors. Residual risk can
then be evaluated and covered by insurance.

Other obligations should be respected (citatiomgalibns, etc...) and more generally
obligations that have an impact on the releasendhe documentation that would create
conflicts if not respected. For example, some Besnimpose citation obligations of different
nature that must be tracked and respected.

Moreover, these issues should also be considergdas practices with respect to IPRT issues
Good packaging practices are also to be formalild respect to IPR Tracking issues, for
example:

- Packaging: clear identification of third part@@mponents, filing by type of licenses, etd=ar

example, some headers may not clearly indicatectimeponent’s license or may differ from
what is required by a particular license. Such meguents can be part of good practices (for

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 42 of 64

example, respecting headers’ integrity) and otheag be specific obligations required by some
licenses, which can become difficult to respectthe case of Software made of numerous
preexisting components.

- Documentation: appropriate treatment of the Saféendocumentation is also part of the IPRT,
as the Legal Status of the Documentation attaahedrnponents is to be studied and respected
(for example, the fact that a component documentas released under a creative commons
license).

5 Conclusion

A general framework to tackle the issue of the llegaality of software is proposed. This
framework is based on a rather simple model of beg@ “licensing out” process — exploitation
intention — with a “licensing in” process — pnasting code reuse.

However, component-based and collaboratively dgesisoftware are rather complex object to
describe from the legal point of view. We propasehis report a definition of what we call the
“legal status”, a concept we introduced, in ordedétermine this complexity.

The idea is to reach a legal status that is comipheth the exploitation intentions of the
component-based and collaboratively developed soéw

This legal status is the output of an intellecpalperty rights tracking process.

The Intellectual Property Rights Tracking framewakd audit methodology is proposed to
design such process.

This approach was applied to several cases andlteasly provided interesting results.
The methodology we applied at INRIA is a FOSSolaggisted process, as license checking of

reused components and component license integmtyfication duration and costs are
dramatically improved with this open source tool.

This contribution to the software legal quality d&bhas to be discussed and further enriched
and could lead to an interesting standardizatiacgss to be set up. We think it opens space for
automatically handling or tool assisted treatmédrn¢gal quality monitoring of component-based
and collaboratively developed software.

However, a strong need of standardization is shown.

This standardization need is a growing concernp&Enosource communities, see for example
Debian or eclipse initiatives in related fiells

o Debian http://dep.debian.net/deps/dep5/
Eclipse http://www.eclipse.org/projects/dev_process/prelegtphp

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 43 of 64

Up to now, the following feed-back, based on theesathe IPRT Methodology was applied to,
can be provided:

- Although it is a key issue, especially in the cahtef collaboratively developed
software, analyzing the various contracts in thetext of which software was developed
can turned out to be a delicate task, especiallgrwhoftware development last for
decades: the chain of contracts may not be alwegsatear and an effort (which can be
time consuming) has to be done to identify which pasoftware has been developed in
the context of each contract (and therefore to lwipiart of software should IPR clauses
eventually apply). This is especially true for asmauc institutions, which are very
familiar with bilateral and collaborative reseamdntracts.

- Although we believe FOSSology to be today the neostne of the most efficient license
checker, the analysis of results can be time comgynespecially for software with
numerous files: some files may be identified twice~ossology’s results (for example
when a file contains source code submitted to twimrént licenses), which may be
misleading or confusing if the audit team is noaeavof it. Moreover, FOSSology does
not make an automatic link between a file, the congmt which uses the file and its
location in software. This has to be made by hapdhe audit team and can therefore
take a long time. This is not du to FOSSology nd#i¢ drawbacks, but du to the poor
guality of the header or legal notice or informatencountered in source code files.

- The standardization priority should to focus ondera information content and structure.

We believe however, that if the IPRT analysis wdutdmuch efficient and cheaper if clear legal
development roadmap (licensing out and licensingoiiicies) is formalized and implemented as

soon as possible during the development lifecyole i legal data are gathered or generated
along the development process along with the soétwadocumentation, reducing the audit

phase to a simple verification phase.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 44 of 64

Annex I: Toolbox for legal status drafting

Legal Status Template

Figures 18 to 20 illustrate the form to complete tlegal Status, as well as the reasoning the
audit team has to follow when analyzing the différsoftware components. Figure 18 is the
form which is currently used at INRIA (in particuléor the DIET case). Finally, the last
document of this annex is a guideline to help tnditaeam fill out the form.

Figure 18: Template used to determine perceivedlL8tatus

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 45 of 64

FLOWCHART

Figure 19: Flowchart used to complete the LegaiuStaf DIET (Part 1)

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 46 of 64

Figure 20: Flowchart used to complete the LegaiuStaf DIET (Part 2)

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 47 of 64

Structured template (text format) of the Legal Stat

X Software analysis

1. Position in chain of rights

Initial
software

derived
software

components-
based
software

High level description functional zone:

High Level description
functional zone:

Functional zone
licensing scheme:

[Name of functional zone]'s components:

us

name version | location

nature

License of
the
component

(Licensing in)

License
Text
integrity

composition
rule

Compatibility
(with proposed
Licensing out)

packaging

comments

2. Owners of IPR on Software:

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 49 of 64

Moral rights:

Author's Affiliation Affiliation Contribution Comments
name link spec code doc

Patrimonial Rights

Organisation |Licensing contact name Comments

3. Legal Conditions of exploitation: 4. Other enforceable IPR:

comments Patent
Restricting Licenses Trademark
Other restricting Copyright
agreements
Icons/Images
Restricting laws Fonts
Other binding rule or Database

provision

QualiPSo * 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 50 of 64

Guidelines — Legal Situation Questionnaire

The Legal Situation (LS) form (document 1) is auras of all the information which enables to
determine Software’s LS, as well as the adequathisiLS to Software’s licensing scheme(s).

To fill out this form and determine the LS, the &iudam needs, in particular, to examine each
component part of software, individually.

In order to help the team examining each comporemd, find the appropriate information to
complete the LS form, it may use document 2 andicsh@nt 3: they indicate the reasoning that

should be followed and the questions the audit tediould ask itself, when examining a
component part of Software.

Position in the chain of rights :

This section enables to identify, from a legal panview, if Software is related with any
previous software.

Initial software:software developed without being based or intéggairevious software.

Derived softwaresoftware which original source code has been rentif

Component-based softwaftware made with or of pre-existing components.

Your software may be both derived and componengdbasftware.
Information required hereafter, in section 1, sdgolovide the audit team with what we call a

“high level description” (a detailed descriptiorf)Snftware.

For each functional zone:

A functional zone corresponds to a specific anadhtifiable part of the software (for example:
kernel, core, tools, GUI, ...).

High level description functional zonalescribe the functional zone. Refer to a document
representing and describing the functional zorzaf.

Licensing schemeindicate what kind of exploitation/distribution yowish to have for the
components part of this functional zone (dependingyour intention, it may be the same
scheme for all software’s functional zones or thay be a specific scheme for each, one or
several functional zones. For example: | want ttritiute my software’s core under a GNU
LGPL license but | want to distribute the plug-umsder a proprietary license).

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 51 of 64

For each component of a specific functional zone:

Name:indicate the component name
Version:indicate the component version number

Location:indicate where the component is available in glease package (path) or its url if it is
located on a remote server, or equivalent inforomaith case of other technical situation.

Nature:

Indicate if:

the component was created ex-nihilo, without iraegg pre-existing code (pre-existing code
belonging to a third party or belonging to you, baming from a different software)

the component was created ex-nihilo and integate£xisting code.

the component is a pre-existing component, whiabk hot been modified by Software’s
authors.

the component is a pre-existing component whichldeeen modified by Software’s authors.

License:indicate wherever the component is submittedgaréicular license.
Inteqrity: indicate wherever the license’s text has been fiead{example: the license is called
GNU GPL, but the text of the license is modifiedtbe owner of the component added an

exception).

Composition ruleindicate the type of link/dependency existing kesiw the component and the
rest of software (example: dynamic linking).

Compatibility: compatibility between the component’s license switlvare’s licensing scheme.

Packagingindicate wherever the component’s license hagabdn in relation with software’s
packaging, you should comply with or if you neecchange the component license (when it is
allowed by it) to comply with the exploitation sche of the Software.

Commentsyou may wish to indicate additional informatiomch as a problem you identified
(example: name of component’s owner if it is a @xesting component) or that you may need
for further action related to the component.

Owner of intellectual property rights:

We are talking here of IPR ownership on Softwara ashole, and not on the components taken
individually.

Moral Rights:
Author’'s name:indicate the author’s full name. For the purpo$ehts form, an author is a

person who contributed to the Software by creatmgv code, documentation and/or
specification. Authors of pre-existing code/compusedo not need to be mentioned.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 52 of 64

Each time you identify an author of “new code”, lghusing document 1 and document 2’s
framework to analyse Software components, you shaddl him/her in this list.

Affiliation: indicate if the author is affiliatedot a particular organisation (example: your
company, a third party’s company, a university...).

Affiliation link: indicate how the author is affdted (work contract, as a student, an intern...).

Contribution’s nature: indicate wherever the autleontributed by developing code and/or
writing specifications and/or writing documentation

Comments: you may wish to indicate additional infation (for example: if you need to acquire
exploitation rights on the component or if the satnenponent is used in different functional
zone, you may mention it).

Patrimonial rights:

Organisationindicate which organisation is the owner of patnmal rights on software.

Licensing contact namedndicate the name of the authorised person to dmgacted in this
organisation, preferably in a licensing department.

Legal conditions of exploitation:

Restricting licensesindicate the different licenses (FLOSS, proprigthcense...) which are
restricting.

Other restricting agreementsidicate if an agreement, such as a researchamntonsortium
agreement, a joint property agreement, a confidktytiagreement, or any contract in relation
with Software exists. If such an agreement existdicate it has clauses (in particular IPR
clauses) which could restrict Software’s use.

Depending on _these other restricting agreement, mpay identify new patrimonial rights’
owners you were not aware of (for example: a rebeaontract according to which the parties
are joint owners on all results, wherever their Exyges are authors or not of such results) and
therefore complete the list in the previous section

Restricting laws:indicate if there are any laws existing which nragtrict Software’s use or
creating obligations you should comply with (exaenpf Software is to be used in France, and
that this Software collects IP addresses when lised: you are required by French Law to be
previously granted permission to collect IP addgsssy a public authority called CNIL).

Other binding rule or legal provisioryou may be aware of another binding rule or legal
provision, such as jurisprudence, court decisiorubng, regulation, certification or standards to
comply with, for example.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 53 of 64

Other enforceable IPR against component’s:

Patentindicate if software uses any identified paterigvever it is your patent or a third party’s

patent) and indicate wherever you have the necesggnts to use it (if the patent belong to a
third party, you may need a license, and if thepabelongs to you and a third party, you may
need the joint owners approval, or if you are thl @wner of the patent, you should check, for
example, if you have not granted an exclusive Beeon the patent).

Trademarkif you wish to distribute and/or use the softwargler a particular name, indicate if
this name is not a registered trademark or not.

Copyright:indicate if any copyright can be enforced agasa$tware (example: parameters files,
copyrights on icons, pictures in documentation) d&ydu have the necessary exploitation rights.

Databaseindicate if a database is included in or distrdolitvith software and if you have the
necessary rights to do so.

The DIET case: detailed legal Situation :

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 54 of 64

Annex 1 THE DIET CASE: This part of annex 1 presents a detailed legalsw@it DIET

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 55 of 64

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 56 of 64

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 57 of 64

DIET IPR owners (moral and patrimonial rights)

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 58 of 64

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 59 of 64

ANNEX 2: EU PALETTE CASE STUDY

Introduction:

QualiPSo IPR tracking methodology was used by “dgedically sustained Adaptive LEarning
Through the exploitation of Tacit and Explicit kmedge ” (PALETTE) European Project
steering committee to determine the better opemcsolicensing strategy for the six software
services developed within PALETTE. This was thstfcase on which the IPRT Methodology
has been testes and applied on.

Further to this first case, an attempt and effatse made to improve the documents used in the
context of the IPRT. The methodology itself hasadrse evolved since this first version of this
QualiPSo D1.4.1eport on the proposed IPR tracking methodology

IPRT and EU PALETTE Project:

Step 1 : High level description of the PALETTE serv ices and audit
objectives

PALETTE is coordinated by ERCIM. EPFL a PALETTE to@r prepares the Exploitation Plan
of PALETTE services. A first “draft Exploitation gh” was released.

PALETTE steering committee had a demand to worklegal quality” of the software services
developed within PALETTE and got in touch with QBR&o people involved in the “Legal
Issues” activity for that purpose. The “Final Op®aurce Strategy” deliverable of PALETTE
aims at providing indicators in order to ensure femesibility of the Exploitation Plan/ Business
Plan for PALETTE services.

The objective of the collaboration with the QualP@oject is to easily describe and audit the
different services developed within PALETTE project know if their licensing constraints fit
with the Exploitation Plan defined by the Consartiu

The results of the last QualiPSo methodology baselysis will be integrated in the “Final
Exploitation Plan” deliverable due at the end & BALETTE project.

Step 2: Preparation of a questionnaire for “perceiv ed legal status
determination”

In order to handle this Audit, the INRIA team inved in QualiPSo project built a questionnaire
to collect related information.

The first part of annex 2 presents the analysQuiliPSo questionnaire

This questionnaire has been sent to the “developmanagers” of the PALETTE services.
The services which were analysed are the following:

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 60 of 64

Collaboration Services: CoPe_it! and eLogbook
Knowledge Management Services: SweetWiki, ECCO,e8sn
Information Services: Amaya, LimSee3, DocReusegtRalWeb Portal

Step 3 Determination of “Perceived legal Status” fo rany PALETTE
software and additional “FOSSology Scanned” Leqgal S tatus for Bay Fac
Software

A first analysis of the questionnaires was provided of December 2007. This questionnaire is
available in the previous version of this delivéealbiowever, we would consider annex 1 of this
report to be an updated and revised version oQinestionnaire.

The questionnaire is composed of two parts: “Cau @mponents” and “Contractual context
and Peripheral IPR”.

First part: Code and Components

. Almost all components are based on a large numibexternal components
each external component must be clearly identified
. This is not necessarely the case for all tootksarvices
Some of them induce potentially strong constrammtgossible exploitation scheme.
. Identify carefully if the link between the extalncomponent and the tool induces

contamination from GPL-like components

Some of the components have been modified.
. Open guestion about integration of modified comgaus into release of PALETTE tools
or contribution to original community (with leadinguestion about maintenance of
modified/forked version)

Second part: Contractual context and peripheral IPR

. Contractual context
Pre-existing know-how (PKH) has been identified
. Check if the initial version of the PKH (beforedification by PALETTE) is identified .

. Check if all IPR owners are members of the PALETEDnsortium
. Check how PKH must be interpreted according thresortium agreement
. Global exploitation / dissemination scheme

Some of the PALETTE services already appear to lli#fferent dissemination strategy
from GPL based to more permissive one based ondvI0GPL licenses
PALETTE project aims to provide an interoperablal axtensible set of innovative
services. However, the questionnaire answers shdwelped to :

. Open question about heterogeneity of licensimgse for different services

. Lack of description on high level architecturepiementing “interoperability” (ie what
will be the nature of the link between the servjces
Global vs. local dissemination scheme from thepoi view of PALETTE objectives,

. Define objectives and priority in term of disseation

. Improve understanding at services level of thesgde compatibility problem with global

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 61 of 64

dissemination strategy

. Identify blocking/critical point

. According to resources available, roadmap, amoripr, consider to solve some of the
problems identified (for instance substituting anpmnent under contaminating license),
modifying the global interoperability scheme at teehnical, legal or dissemination level

After this first analysis, the Bay Fac software elepment manager had decided to do an
“automated legal status mining of Bay Fac” software

This work was done using FOSSology license cheakdread to the Legal Status £&»)

Step 4: Problem identification and Risk evaluation.

This “automated legal status mining of Bay Fac” waspare to the L& ®® F9«perceived”
legal status of the development team and discusghadt.

No critical problem was identified for Bay Fac swdire and risk to distribute it under a GNU
GPL license was considered to be very low.

An example of non critical problem detected by ggt®©SSology is the presence of the Bay Fac
software archive used for the audit of a compomartmentioned by the development team.
After discussion it appears that this component madsised anymore...

Step 5 : Solve Blocking problems
Detailed in the previous report (minor points).

Next phase for Palette projects:

The process used for Bay Fac Software has beendeddo the other PALETTE software. This
work is in progress. However, although this pretiary work is not completed yet, we may draw
observations at this stage.

The answers to the QualiPSo questionnaire showrratiportant variations

- from a PALETTE service to another one, on the losued

- in the policies of the different partners in fawd the Open Source Strategy, on the other
hand.

In order to determine the perimeter of the audid #me methodology of traceability to be

implemented, it is important to identify (via theoitation Plan Questionnaire for example) the
characteristics of the communities of users todbelp.

According to their composition and to what is aedifrom their members, it will be possible to

identify the best adapted Open source license’smeh(from the most permissive to the most
contaminant).

It is also necessary to have one or more “globethiéectural visions for the various services
(representing the interoperability of services)johihwill have sense for the actors (users, service
companies, software publishers, researchers, etc).

It will then be possible:

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 62 of 64

- to determine if the exploitation schemas expedmdthe PALETTE services are
compatible (legal analysis to be done...)
- to identify if the “legal status” of the comparie allows these exploitation schemas.

For this, we need a description of this legal stain one hand (on the basis of answer to the
guestionnaires), and an analysis of the conteatsl@dicated tools for source code analysis (i.e.
to extend FOSSology audit test to other PALETTEises). If problems are identified, we will
be able to consider corrective measurements, adapt the exploitation schema.

In term of traceability, an infrastructure allowitige development activity is strongly advised
(for example via the portal gforge.inria.fr). Thdes of governorship of these communities will
have to be the subject of a specific attentionnd€essary, the IPR could be centralized, to
simplify the evolution of the licensing schema.

Palette use case conclusion:

PALETTE consortium still needs to work in collabboa with QualiPSo project (people of WP
1.4), to go further in the audit of the source cO8®ALETTE services, once "packages” of the
different services will be available and the dekiieense defined.

The full 6 steps IPRT methodology has been usetherBayFac software service (see figure
xX). It leads to a clearly defined Legal Statustfos software service in a quick process of only
two iterations with the development team (10 woaks). Components redundancy as well as an
unused component presence in the release packagedeatified, leading to corrective actions
and improvement of the release package quality.

In parallel, PALETTE consortium should decide on:
- a global interoperability scheme of the PALET3édtvices
- an exploitation scheme for each service
- the OSS community and governorship
- an infrastructure for traceability

At last, we will give indications on (i) the actis to follow (implementation of corrective

actions or not) in term OS license choice, (i) tteategy to follow in term of services
exploitation/valorisation.

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 63 of 64

Figure 21: PALETTE IPRT Process

QualiPSo « 034763 « A1.D2.1.4 « version 2, dated 16/12/2009 « Page 64 of 64

